

Interferometry in Action

A Key Technology for NASA's ORIGINS Program

Gary H. Blackwood Jet Propulsion Laboratory Pasadena, CA

Imagine Yourself Living in 1903

Could you have imagined the world today?

Orville Wright

Kitty Hawk, first flight

ORIGINS Missions

NASA's Big Questions

Where did we come from?

Where are we going?

Are we alone?

Optical Interferometer Science

Study of compact astrophysical targets (>100x resolution of HST)

Imaging of stars and their surroundings: X-ray binaries, stars with outflow

Imaging of Black hole accretion disks

Imaging and spectroscopy of extrasolar planets

Hunting for Earth-like Planets

Space Technology 3

- 1. Validate autonomous formation-flying system
 - Relative position control to 10 cm
 - Relative attitude control to 1 mrad
 - Inter-spacecraft range up to 1 km
- 2. Validate technology for formation-flying optical interferometry
 - Operational wavelength: 450-1000 nm
 - Baseline range: 40-200 m
 - Limiting magnitude: $m_v = 8$ at $_S = 0.3$

2. Combiner-mode interferometer observations

1. Delta-II launch to

heliocentric Earth-trailing orbit

3. Spacecraft separate and perform formation-flying maneuvers 50 m to 1 km

4. Formation-flying interferometer observations

ST3: the "Left Handed Interferometer"

- Formation-flying spacecraft over 1 km
- Laser metrology between spacecraft
- Active optics steer starlight
- High speed active control
- Detector plane: CCD, APD

Why does this interferometer only have one arm?

Interferometry 101: Equal pathlengths for Fringe Detection

What if we only have 2 spacecraft?

The original 3-spacecraft idea:

A 2-spacecraft version

had problems:

Problems -- Baseline is only ~20m!
Baseline not adjustable!

Geometrical Curiosities

If this geometry works...

Then so does this...

More Curiosities

Baseline is variable between 0 and 20 m:

But wait -- there are points out here that work, too!:

The Breakthrough: a Virtual Parabola!

Aperture Plane Filling

Possible Science with ST3

Phi Persei

Be Stars -- hot stars surrounded by large disks of gas

Wolf-Rayet star at center of nebula NGC 2359

Wolf-Rayet Stars -- stars with heavy outflows of gas

Measure angular size of M-dwarf stars and improve models of stellar formation

